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Early treatments of flames as gasdynamic discontinuities in a fluid flow are based 
on several hypotheses and/or on phenomenological assumptions. The simplest and 
earliest of such analyses, by Landau and by Darrieus prescribed the flame speed to 
be constant. Thus, in their analysis they ignored the structure of the flame, i.e. the 
details of chemical reactions, and transport processes. Employing this model to study 
the stability of a plane flame, they concluded that plane flames are unconditionally 
unstable. Yet plane flames are observed in the laboratory. To overcome this difficulty, 
others have attempted to improve on this model, generally through phenomenological 
assumptions to replace the assumption of constant velocity. I n  the present work we 
take flame structure into account and derive an equation for the propagation of the 
discontinuity surface for arbitrary flame shapes in general fluid flows. The structure 
of the flame is considered to  consist of a boundary layer in which the chemical 
reactions occur, located inside another boundary layer in which transport processes 
dominate. We employ the method of matched asymptotic expansions to obtain an 
equation for the evolution of the shape and location of the flame front. Matching the 
boundary-layer solutions to the outer gasdynamic flow, we derive the appropriate 
jump conditions across the front. We also derive an equation for the vorticity 
produced in the flame, and briefly discuss the stability of a plane flame, obtaining 
corrections to the formula of Landau and Darrieus. 

1. Introduction 
The equations governing flame propagation are extremely complicated. They 

involve the Navier-Stokes equations for viscous compressible flows, expressing the 
conservation of mass and momentum, coupled with the transport equations governing 
heat conduction and diffusion of the chemical species participating in exothermic 
chemical reaction(s), expressing the conservation of energy and species. The coupling 
from the fluid equations to  the transport equations occurs for example through 
convection, while the coupling in the other direction is due to the thermal expansion 
of the gas in which combustinn takes place. The equations involve not only the usual 
fluid-dynamical nonlinearities, but also the exponentially nonlinear term describing 
the Arrhenius chemical reaction rate. It is therefore not surprising that scientists have 
resorted to approximate treatments, either by introducing phenomenological models 
or by considering various limiting cases, thus permitting analysis of the resulting 
model. 

For example, a diffusional thermal model was introduced by Barenblatt, Zeldovich 
& Istratov (1962). I n  this model, which is related to the often-employed constant- 
density approximation, the effect of thermal expansion is considered to be small, so 
that a decoupling of the fluid equations from the transport equations is effected. Thus, 
to leading order, the fluid equations in the absence of thermal expansion are solved, 
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FIQURE 1. Schematic representation of a flame as a gasdynamic discontinuity. 

and the resulting velocity and constant-density fields are employed as known 
coefficients in the transport equations. The effect of the fluid field on the flame is thus 
taken into account, while the effect of the flame on the gas through which i t  
propagates is ignored. A consistent mathematical derivation by asymptotic methods 
of a diffusional-thermal-type model from the general equations of combustion was 
presented by Matkowsky & Sivashinsky (1979). I n  a sequel, van Harten & Matkowsky 
(1982) included the effects of a weak coupling. These models have been successfully 
employed to  describe qualitatively various flame phenomena, including cellular 
flames as well as pulsating and spinning flames. 

At the opposite end of the spectrum, there are models that  account fully for thermal 
expansion, but suppress the roles of transport processes. A general description of these 
models is given in Markstein (1964), as follows. A flame was regarded as a moving 
density discontinuity surface called the flame front, separating burned from unburned 
gas (cf. figure 1 ) .  The fluid variables were assumed to suffer jump discontinuities 
across the front, corresponding to statements of conservation of mass and momentum. 
The fluid-dynamical field on either side of the front was assumed to be inviscid and 
incompressible. The structure of the flame, due to the complex interaction of chemi- 
cal reaction(s), species diffusion and heat conduction, was completely ignored in this 
model. Instead, an expression for the flame velocity, defined as the normal component 
of the velocity of the unburned gas mixture relative to the moving surface, was 
prescribed. 

Mathematically, the flame front is described by the function 

F ( X ,  t )  = x-f(y, 2, t )  = 0. (1.1) 

On the surface 
dF dX 
- dt = &+grad F. -  dt = 0, 

where v = d X / d t  is the velocity of the surface. Then the normal velocity vn of the 
surface element is given by 
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where the unit normal n is given by grad FIIgrad FI, and V = (a/ay, a/&)  is the 
two-dimensional gradient. Writing the velocity field V as V = ui+v, where v is its 
two-dimensional transverse component, the flame speed X, is thus given by 

u-v . Vf - ft 
(1 + IVf l 2 ) i  ’ 

X, = V.n-v, = 

where V in (1.4) is evaluated just ahead of the front, i.e. a t  x = f -. 
The jump conditions, corresponding to continuity of the tangential velocity 

components, as well as conservation of mass and momentum, are given respectively 

[Ip(V. n-  b’,] = 0, 

[rp+pV.n(V.n-v,] = 0, 

where p and p denote respectively the density and pressure of the gas mixture, and 
[#] E #(r = f+)--#(x = f-) denotes the jump in the quantity # across the front. 
Finally one must specify the density jump [pa across the front. A complete description 
of the flow field on both sides of the flame can now be given in principle by solving 
Euler’s equation subject to the conditions (1.5)-( 1.7) provided that S,  is known. 

The earliest treatments of flames according to the model just described are due to 
Landau (1944) and Darrieus (1945). In analysing the stability properties of plane 
flames, they made the simplest assumption by choosing X, to be a prescribed constant. 
If velocities are normalized with respect to the propagation velocity of a plane 
adiabatic flame, the Landau-Darrieus model consists of (1.5)-( 1.7) and 

Sf = 1. (1.8) 

Owing to the heat released during combustion, [ p ]  < 0, and the Landau-Darrieus 
analysis predicts that plane flames are unconditionally unstable. Indeed they obtain 
that the growth rate of a disturbance of wavenumber k is given by 

w = w o k ,  (1.9) 

with wo > 0 (see figure 2). However, this result is not in accord with observations, 
since plane flames are observed in the laboratory. Later works attempted to improve 
on the Landau-Darrieus model by assuming different expressions for Sf. Markstein 
(1951) suggested a dependence of X, on flame-front curvature, by introducing a 
phenomenological parameter independent of the physicochemical parameters of the 
problem. This study, as well as later related work by Eckhaus (1961) and others, is 
described in Markstein (1964). 

I n  this paper we consider the flame to consist of a thin boundary layer where 
transport processes dominate and in which there is another, much thinner reactive 
boundary layer (see figure 3). If 1, represents the characteristic length associated with 
diffusion and L a typical length of the problem, e.g. the scale of the outer 
fluid-dynamical field, then the flame thickness is O(S), where 6 = lD/L. The reactive 
boundary layer is O(ES), where E is inversely proportional to the activation energy 
E of the chemical reaction. Many of the reactions occurring in combustion in fact 
have large activation energies. Thus for E $ 1 the reaction rate is strongly 
temperature-dependent, and the chemical reaction is confined to a thin reactive 
diffusive layer. Typical flames have reaction zones - mm and transport zones - 10-1 mm. Thus on the fluid-dynamical scale the flame may be regarded as a moving 
front. In  order to account for the interaction of chemical-reaction and transport 
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FIGURE 2. Growth rate of a disturbance versus its wavenumber according to results o f  Landau 
and Darrieus. 

FIGURE 3. Schematic representation of the various scales associated with a curved flame in a 
general fluid flow. 

processes with the fluid flow, we analyse the structure of the flame by determining 
the solution inside each boundary layer. We employ the method of matched 
asymptotic expansions to  match the boundary layer solutions to the outer flows, and 
derive, rather than prescribe, the appropriate jump conditions across the front as well 
as an equation for the evolution of the shape and location of the front f ( y ,  x ,  t ) .  The 
solution of the problem is given as an asymptotic expansion in powers of 6. The 
leading terms in the expansion correspond to  the Landau-Darrieus model, while 
higher-order terms, which expljcitly depend on the physico-chemical parameters 
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account for the structure of the flame and provide corrections to their model. The 
corrected model has been employed to reconsider the stability problem for a plane 
flame. Finally we mention that there have been attempts to use the Landau-Darrieus 
model with the constant-flame-speed assumption in order to simulate flame propa- 
gation numerically in a variety of fluid flows. Thus our results also provide more 
accurate prescriptions for the velocity of, and the jump conditions across, the front 
for such simulations. 

To be sure, in recent notable works Sivashinsky (1976), Clavin & Williams (1982) 
and Peke & Clavin (1982) have also analysed the flame structure and its interaction 
with the fluid flow. Sivashinsky (1976) considered flames that were slowly varying 
in both space and time and assumed that f varies on the slower scale in order to permit 
O( 1 )  flame deformations. In  contrast to our scaling by L, he scaled lengths by I ,  and 
considered an O ( E )  reaction zone, an 0(1) transport zone, and an O(E-,)  far-field fluid 
zone. Thus he effectively took 6 = e, and derived an expression for S, and jump 
conditions identical with (1 5)-( 1.7).  With a similar non-dimensionalization to that 
in Sivashinsky, Clavin & Williams (1982) used a multiscale method in which they 
effectively employed the scales e and 6. They further assumed both f and v to be O(6) 
and derived an evolution equation for f. Under the same assumptions, Peke & Clavin 
(1982) following Clavin & Williams derived jump conditions across the flame front. 
In  contrast, in our analysis both f and v are taken to be 0(1), so that our results are 
valid for arbitrary flame shapes in general fluid flows. In  this sense the analyses of 
Clavin & Williams and Pelce & Clavin may be considered a linearization of our results 
and can be recovered iff and v are specialized to be O(6).  

In  $2 we non-dimensionalize and scale the governing equations. In  $3 we analyse 
the reactive boundary layer, while in $4 we describe the outer fluid flow in which the 
flame is considered as a surface discontinuity. In  $5 we analyse the diffusive transport 
boundary layer, and match to the outer fluid flow to obtain the jump conditions and 
the evolution equation. Finally, in $6 we summarize our results and draw conclusions. 
Specifically, we discuss the motion of the flame front (§6.1), the jump conditions across 
the flame ( f~6 .2 )~  the vorticity production in the flame (§6.3), the temperature of the 
burned gas (§6.4), and the stability of plane flames ($6.5). 

2. Governing equations 
We consider a homogeneous premixed combustible mixture of density p-, and 

temperature T-, that undergoes a one-step irreversible exothermic chemical reaction. 
In  the reactive mixture, one of the components, say M,, appears in sufficiently large 
quantity so that all physical properties of the mixture are determined essentially by 
that component. For convenience we further assume that the mixture contains a 
single deficient component M ,  and that the rate of progress of the chemical reaction 
depends on M ,  alone. Thus when M ,  is depleted the chemical reaction terminates. 
Further, we assume that M I  appears in sufficiently small quantities so that it is only 
necessary to follow its evolution rather than the evolution of the other components 
whose concentration remains relatively unchanged. A mass balance for N ,  provides 
a single diffusion equation that accounts for the rate of its consumption. More 
generally, if we were to follow j reactants, then j diffusion equations result. In  
addition, mass, momentum and energy equations for the whole mixture must be 
considered simultaneously, the latter being modified to account for the heat released 
by the chemical reaction. 

With the exception of velocities, we non-dimensionalize all variables with respect 
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to their values in the fresh cold mixture. Thus T-,, p-, and p-, are used as units 
of temperature, density and pressure respectively, and Y-, as a unit for the mass 
fraction of M,.  Velocities are non-dimensionalized by S$ the propagation velocity 
of a plane adiabatic flame throughout the given mixture. The diffusion process 
introduces a lengthscale ID = Alp-, cpSfo, where A is the thermal conductivity of the 
mixture of c p  its specific heat at  constant pressure. However, rather than using 1, 
as the characteristic length, as did Sivashinsky (1976) and Clavin & Williams (1982), 
we non-dimensionalize distances with respect to a characteristic dimension L of the 
gasdynamic field, such as a typical radius of curvature of a curved flame. The ratio 

represents the relative thickness of the transport zone, or the flame. Finally the time 
variable is non-dimensionalized by LISP. 

The non-dimensional governing equations are then given by 

aP 
at 
-+ div (pV) = 0, 

= -gradp+6Pr 

-GLe-'aY= -KI, (2.4) 

where p is the density of the mixture and T its temperature, Y is the mass fraction 
of species M,,  and V the velocity field. Equations (2.2)-(2.5) are written under the 
assumption that flames propagate a t  speeds much smaller than the speed of sound. 
Thus, the representative Mach number Ma = Xg(p-,/p-,)~ is very small, implying 
that the process is nearly isobaric. Since only pressure gradients appear in the 
momentum equation, p in (2.3) represents only small deviations from its uniform 
ambient value. The total pressure is therefore given by 1 + (Ma)2p.  As a consequence, 
the equation of state simplifies to 

pT = 1, (2.6) 

and the viscous-dissipation terms normally appearing in the energy equation are 
absent in (2.5). The system (2.2)-(2.6) thus corresponds to the leading term in an 
expansion with respect to Ma. Another assumption made is that the coefficient of 
viscosity p, the thermal conductivity A,  the specific heat c p  of the mixture as well 
as 9 = pPm D,  (where D, is the diffusion coefficient of M , )  are all constant. Therefore 
the parameters appearing in the equations are the Prandtl number Pr = pcp /h  
representing the ratio of viscous to thermal diffusivities, the Lewis number 
Le = A/%, representing the ratio of heat to mass diffusivities, the length ratio 6 
defined by (2.1), and the heat release q ;  the latter being the total heat of reaction per 
unit mass of reactant consumption made dimensionless by cpT-,. Finally, the 
reaction rate R, assumed to be of Arrhenius type takes the form 
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where E is the activation energy of the reaction made dimensionless by RT-,, R 
being the universal gas constant. The preexponential factor A in (2.7) is chosen so 
that the non-dimensional flame speed of a plane adiabatic flame is unity. 

The governing equations (2.2)-(2.6) are to be solved subject to appropriate initial 
and boundary conditions. I n  the following we consider the case of an already 
established flame propagating into the fresh mixture. Thus for example we choose 
the initial conditions so that they are close to  those that correspond to the established 
propagating flame rather than considering the evolution of arbitrary initial data to 
form the flame. In  particular, we assume that the initial distribution of Y is zero 
behind the flame, corresponding to the fact that  the reactant M ,  is totally depleted 
by the chemical reaction. Then this property will be preserved for all time. The 
velocity field and pressure distribution will be kept arbitrary in our formulation so 
that no boundary conditions will be imposed on V and p .  However, since it has been 
assumed that the mixture is homogeneous and of constant composition, the mass 
fraction of M I  and the temperature of the mixture are prescribed constants far 
upstream in the fresh mixture. In  dimensionless form 

for all times t 2 0. 
The nonlinear flow field described by (2.2)-(2.3) is further complicated by the 

transport equations (2.4)-(2.5). A simplification often adopted is that  the flow is not 
affected by the flame. However, this simplification can only be justified when the heat 
release p is small (Matkowsky & Sivashinsky 1979). Although such an approach has 
proven to  be useful for qualitative understanding of flame propagation, i t  is not 
necessarily a common characteristic of actual flames. I n  the following, we consider 
q to be O( l) ,  thus taking into account the full interaction between the flame and the 
gas through which i t  propagates. As discussed in 4 1, an asymptotic analysis in which 
the activation energy E is large and the length ratio S is small will be carried out. 
For S < 1, the reaction and transport processes are confined to a thin region that we 
call the flame. For E % 1 ,  the reaction rate is appreciable only in a thin zone contained 
inside the flame and may be neglected elsewhere. In  the limit S + 0, the flame, 
together with the reaction zone embedded in it, shrinks to a moving surface - the 
flame front. The problem then reduces to the study of the fluid flow on both sides 
of the flame front. However, the analysis of the flame structure is essential in order 
to relate the properties of the fluid variables across the flame and to  describe the 
instantaneous shape and motion of the flame front. 

It is convenient to  adopt a coordinate system ,attached to the flame front. Thus, 
if the moving front is described by (1 .1  ), we introduce 

Y = T = 1  as x + - m  (2.8) 

g = " - f ( y , Z , t ) ,  y = y, 2 = 2, t = t .  (2.9) 

Equations (2.2)-(2.5) now take the form 

aP a - + - ( p s ) + V .  ( p v )  = 0, 
at a t  (2.10) 

(2.11) 
au au 
at at  p - + p s - + p ~ .  V u  = 

av a V  

at a t  p - + p s - + p ( v . V ) v  = 

(2.12) 
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ar a y  
at a t  p-++s-+pv.VY-SLe-lAY = -&2, 

aT aT 
+-+Ps--+Pv. VT-SAT = qSR, 

at a t  

(2.13) 

(2.14) 

where s is the longitudinal velocity in the moving frame defined by 

s = U-jt-V.Vf,  (2.15) 

and the Laplacian A in this coordinate system is given by 

A = (1+IVf12)-+Vv2-V2f--2-(Vf a 2  a a  . V ) .  
at2 a t  at 

It should be noted that the velocity field isV = ui + v and that V is the two-dimensional 
transverse gradient, as defined earlier. The flame front located at 6 = 0 separates the 
fresh unburned gases in the region 6 < 0, from the combustion products in the region 
8 > 0 where Y = 0. Finally, for convenience we introduce the notation 

m s ps 
for the longitudinal mass flux. 

(2.16) 

3. The reaction zone 
without any assumption on the magnitude of 

S. Thus 6 = 0 represents the reaction front alone. It is convenient to rewrite the 
reaction term (2.7) in the form 

We first consider the limit E + 

with E = Pa/E < 1 and A' = ASp2 exp ( -  T,/E), where T, = 1 + q  is the adiabatic 
flame temperature, i.e. the flame temperature of a plane adiabatic flame. It is clear 
that from (3.1) that for large activation energy, i.e. for E -4 1 ,  the reaction rate R 
is negligibly small except in a thin O ( E )  region that shrinks to the surface 8 = 0 in 
the limit E + 0. The temperature along this surface to leading order is T, = 1 + q .  

In real gas mixtures, the Lewis number is often near unity. Thus it is reasonable 
to write 

where 1 is O(1).  Another assumption employed in our analysis is that temperature 
gradients in the region of the burned gases are relatively small, i.e. 

Le = 1 + d ,  (3.2) 

- = o(1) (6 > 0). 
aT 
86 

(3.3) 

Then the temperature of the burned gases remains everywhere and a t  all times within 
O ( E )  of the adiabatic flame temperature l + q .  From (2.13), (2.14) and with the 
assumption (3.2) we find that the enthalpy 

B =  T + q Y  (3.4) 

associated with the reactant M ,  must satisfy the equation 

aB aR 
at at  P - + P S - + P V  .VA-SAA = -eSlpAY (3.5) 
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Since z’ = 0 behind the flame, the constant 1 + q is the leading term of the expansion 
of l? in powers of 6 ,  for E > 0. In addition it is the leading term of the solution for 
6 < 0 that satisfies the boundary conditions (2.8). Thus we expand l? and T as 

= 1 + q+ Eh(6, y ,  z ,  t )  + O(e2), (3.6) 

(3.7) T = e(6, y ,  2 ,  t )  + o(s), 
and substituting (3.4) for Y on the right-hand side of (3.5), we obtain for E 3 0 

which replace (2.13) and (2.14) respectively. In  particular we note that 

e =  i + q  g z o ) ,  (3.10) 

and that for the burned gases, the temperature deviations from the value (3.10) are 
expressed by h, since Y 

The analyses of the reaction-zone structure will not be repeated here since it follows 
closely that described by Matkowsky & Sivashinsky (1979), for the transport 
equations (3.8), (3.9). The results consist of the following jump conditions: 

0 there. 

(3.13) 

to be satisfied across the reaction front, a t  6 = 0. Here [9] = 9(( = O + ) - $ ( E  = 0-) 
denotes the jump in the variable 4 across the reaction zone. As for the fluid variables, 
since (2.10)-(2.12) do not contain the reaction-rate term a, a direct integration across 

(3.14) [ = 0 yields 
[u] = [v] = [s]  = 0, 

The continuity equation (2.10) also gives 

(3.15) 

(3.16) 

where use has been made of (2.16). Summing (2.11) and (2.12) after multiplying the 
former by Vf, we obtain 

[ $ + V f E ]  = 0. 

Finally, using (2.15) and (3.17) we write 

(3.17) 

(3.18) 

We conclude that on any scale larger than O ( E ) ,  the reaction zone may be regarded 
as a surface of discontinuity (6 = 0 ) ,  thus effectively replacing the nonlinear reaction 
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rate C2 by the jump conditions (3.11)-(3.18). The resulting problem consists of 
(2.10)-(2.12) for the fluid variables u, v, p ,  and (3.8), (3.9) for the transport variables 
h, 8. Although these equations do not contain 8 explicitly, the dependence of the 
physical variables fl and T on 8 is manifested in (3.6), (3.7). 

4. The flame as a surface of discontinuity 
We now exploit the smallness of the parameter 6. Clearly, the limit 6 + 0 is singular, 

since S multiplies the highest derivatives in the governing equations, representing 
viscous dissipation, heat conduction and species diffusion. It indicates the existence 
of a thin transport zone that we have called the flame, where large gradients are 
confined. In the limit S 4 0, the flame and the reaction zone embedded in it shrink 
to the surface 5 = 0. Then, on both sides of the flame, i.e. for 6 5 0, we seek outer 
expansions of the form 

(4.1) I e = 0,+m1+ ...,, h = H,+sH,+ ..., 
p=Ro+6Ri+ ..., s=So+SS,+ ..., 
u = u,+su,+ ..., v = v,+sv,+ ..., 
p = p,+sp,+..., f = f " + f ' +  .... 

We first consider the transport equations (3.8), (3.9). The leading terms of the 
expansions (4.1) satisfy 

ao, ao - + s , ~ + v ,  .v0, = 0, 
at a5 

---++s,-- aH, aHo+V, .VHo=O.  
at a5 (4.3) 

That is, the convective derivative (in the moving coordinates) of 0, and H,  vanishes, 
implying that both do not vary along particle paths in each region. Since according 
to (2.8) 0, = R, = 1,  H ,  = 0 are the given values far upstream, then 

0, = R, 1, H,  0 (5 < 0). (4.4) 

Furthermore, (4.4) is the solution valid to all orders in 6 ,  since all perturbations of 
0, R and h must vanish as 5 -+ - co. According to (3.10) we conclude that 

0, = R;l = l + p  (5 > 0), (4.5) 

which is also the solution to all orders in 6. However, nothing can be said yet about 
the quantities Hi for 5 > 0, since the flame is expected to produce non-uniform 
temperature perturbations that are expressed by h. This information, contained in 
the values h(0, y ,  z, t )  will be extracted from the flame structure analysis. 

We now consider the flow-field equations (2.10)-(2.12). Since on either side of the 
flame the density is a constant given by 

to all orders in 6, the continuity and momentum equations simplify to 

as 
- + v . v  = 0, 
a5 (4.6) 
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(4.7) 

Substituting the expansions (4.1) into (4.6)-(4.8) results in a series of first-order 
equations valid for 6 >< 0 to each order in 8. To leading order the flow field satisfies 

380 (4.9a) 
Euler's equations 

-+v.v,=o, aE 

(4.9b) 

(4 .94  

so = u,- ft-V,.  VfO; (4.9d) 

namely the incompressible inviscid equations with different density values on either 
side of the flame. Higher terms yield corrections, including those attributed to the 
small but non-negligible viscous forces. In  particular 

-+v.v, 88, = 0, ( 4 . 1 0 ~ )  
at 

= -$+PrAQU,, (4.106) 

av, avo 
R ($+so-+ at 8, -+ at (V, . V) v, + (V, . V) V,)) 

= -VP,+Vfo'+Vfl-+P~AoVo ap ael ( 4 . 1 0 ~ )  
at aE 

s, = ul-f;-vo.vf~-vl.vf~, (4.10d) 

where the superscript in Ao indicates that f in A must be replaced by f o .  

5. The flame structure 
To study the flame structure, we introduce the stretching transformation 

E = 8C (5.1) 

and seek inner expansions of the form 

(5 .2)  1 
0 = e,++o,+ ..., h = h,+~h,+ ..., 
p = po+8p,+ ..., s = s0+6s,+ ..., 
u = uo+8u,+ ..., v = v,+&,+ ... ) 
p=po+8pl+  .... m=m,+Sm1+ .... 

Then the fluid equations (2.10)-(2.12), the transport equations (3.8), (3.9) and the 
jump conditions (3.11)-(3.18), which we rewrite in terms of 5, yield a system of 
equations to be solved recursively for the coefficients of the expansions (5.2). This 
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system describes the transport region, characterized as a convective diffusive zone, 
containing a thin reactive zone. 

To leading order we have, for - co < 6 < 00, 

(5.4) 

(5.7) 

so = u,-f~-v,.VfO, (5.8) 

m, = POSO, p , ~ ,  = 1.  (5.9) 

Equation (5.3) implies that m, is independent of 5, i.e. m, = mo(y, z ,  t), and therefore 
solutions for 8, and h, are readily available. In particular they must satisfy the 
matching conditions 8, = 1 and ho = 0 as { + - co implied by (4.4), and in addition 
8, E l + p  for 52 0 according to (3.10). Following (3.11), both 0, and h, are 
continuous at  5 = 0, and the jumps in their derivatives, accounting for the effects 
of the reactive zone, satisfy 

(5.10) 

(5.11) 

1 +P exp (Urn,) (6 < O ) ,  (5.12 a) 

(5.12b) 

- kmx exp K h o )  (5  < 01, (5.13 a) 

0 (5  > 0). (5.13b) 

In order to determine the velocity field we add (5.6) to (5.7) after multiplying the 
former by Vfo. According to (3.17) the combination vo+Vfou, is continuous and has 
continuous derivatives at 5 = 0. Therefore, after discarding exponentially growing 
terms as unmatchable, we conclude that v,+Vfou, is independent of 5. Using (5.8) 
and (5.9), and matching the results with the outer expansions (4.1), we obtain 

Uo(0-7 Y, z ,  t )  + (4/m,) exp ( 6 h O )  (5 .14~)  

Uo(0-7 y, 2, t )  + q/m, (5 > 01, (5.14b) 

V,(O-* Y, 2, t )  -Vf O(qlm0) exp K h O )  (5 .15~)  

Vo(0-, y? 2, t) - Vf O(q/m,) (5.15b) 

I (1+lVfo12)~[$] = -qexp (+h,(O,y,z,t)), 

[2] = --E[$]. 

Therefore we obtain 

m, = (1 +Ivf"l")t 

8 0 =  { 
ho= { 

l + q  ( 5  > O ) ,  

(6 < O ) ,  
uo= { 
vo= { (5  < O ) ,  

(5  > 0). 
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Equation (5.8) then implies that 

25 1 

f t "  + V,(O-, y, z,  t )  . VfO - Uo(O-, y, z,  t )  + (1 + IVf 012)i = 0, (5.16) 

which indicates that  to leading order the flame speed Sf defined by (1.4) is indeed unity, 
as assumed by Landau and Darrieus. Finally, the pressure distribution is obtained 
after integrating (5.6) once and using the jump condition 

at 5 = 0. Matching with the outer pressure field then implies that 

Po(O-, y, 2,  t )  + (%Pr- 1 )  Q exp (Clm,) (5.17 a )  

Po(O-, y, 2,  t )  -Q (C > 0). (5.17 b )  

The jump conditions to leading order across the flame front can now be summarized 

i (5.18) 

(5  < O ) ,  
Po =( 

as 
won = Q ( i  + I V ~ I ~ ) - ~ ,  
[v, + uo vfq = 0, 

I I P O I  = -q3 I 
where "$1 = $([ = 0+) -$([ = OW) denotes the jump in the variable q5 across the flame. 
The quantity [$I represents the jump in $ across the transport zone, i.e. the flame, 
in contrast to the quantity [$I, which represents the jump in q5 across the reaction 
zone. It can easily be seen that the conditions (5.18) are indeed identical with 
(1.5)-(1.7). Thus, in order to obtain corrections to the Landau-Darrieus model, we 
shall include the O(6) terms in the analysis. 

We first consider the continuity and transport equations 

-- am, - V.(p,v,), 
a5 at 

(5.19) 

to be solved for - co < 5 < CQ. At 5 = 0, the quantities m,, 8, and h, are all 
continuous, and according to  (3.12), (3.131, 

(5.22a) 

(5 .22b)  

9 E L M  124 
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which accounts for the effects of the reaction zone. The result'ing solution for m, is 

W L ,  = G(y, z , t ) - -  (v . V,(O-, y, z ,  t)-qV"fO/rn, + q 
l + q  

+(%+ v . v,(O-, y, t, f )  +vzfo In (1 + q )  (5  > 0), (5.236) 1 
where G, as yet an undetermined function, is independent of 6, and 

- ~a - D 1) Vf0 .V 
Dt =,+V,(O-,y,z,t).V, -=-+- 

Dt Dt m,, 
(5.21) 

are the convective derivatives associated with the transverse velocity vector just 
ahead of the flame. This notation will also be used in the subsequent analysis. For 
<> 0, the right-hand sides of (5.20) and (5.21) vanish, implying that 19, and 
h ,  are independent of y since exponentially growing terms must be discarded as un- 
matchable. In  particular, since the outer solution (4.5) for 8 is valid to  all others in 
S, matching implies that  8, = 0 for 5 > 0. Therefore 

8, = 0, h, = h,(O, y, z ,  t )  (6 > 0). (5.25) 

Although the solutions 8, and h, for 5 < 0 can be obtained, all that is needed a t  the 
present is the integration of (5.20), (5.21) with respect to 5 from - rx) to 0 in order 
to determine &9,/8<and dh,/aCat 6 = OW. Using (5.25) and the jump conditions (5.22) 
we obtain 

(5.26) m , h , ( O , y , z ,  t )  = -ZI V2f0+moV.V,(0~ ,y ,z , t )+- -  

Vzfo + m,V . V,(O-, y. 2, t )  +- (5.27) 

where I, which depends only on q ,  is given by 

(5.28) 

We now consider the momentum equations for the velocities u1 and v, and the 
pressure p , .  Rather than writing the lengthy individual equations, we note that the 
combination v, + u, Vf O satisfies 

V f O + P r V ( w z , ~ ) ~ +  &' ( Vfl--V :6 )( Po--- : !:) (5.30) ac 
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for -00 < < 00. According to (3.14) and (3.17), a t  5 = 0 

[V1+U1Vf0] = 0, (5.31a.) 

(5.31 6) 

We will avoid writing the complete solution, since our interest is in the determination 
of its behaviour as 5 --f CO. In  particular, after matching with two terms of the outer 
expansions (4.1), we obtain 

1 D  

(5.33) 

(5.32) 

where cr E I++- l + q  In (1  + q ) .  (5.34) 
4 

It should be noted that, unlike (5.33), (5.32) does not yield any new information as 
i t  can be also derived directly from the outer equations (4.9). Employing (2.15) and 
(2.16) we obtain 

(5.35) 

s1 = m, el + ml e,. (5.36) 

where use has been made of the equation of state podl +pieo = 0. These equations 
provide the solution for u1 in terms of already determined quantities. I n  particular 
the behaviour of u1 as 5 co can be determined. After matching with two terms 
of the outer expansions (4.1) we obtain 

m;v = 8' + f; + vg . Vf' + Vf O(V, + U' Vf O ) ,  

(5.37) 

(5.38) 

where y = $qI. (5.39) 

Again, (5.37) can be derived directly from the outer equations (4.9) and contains no 
new information. Matching also implies 

f t + V,(O-, y, x ,  t )  . Vf + Vl(O-, y, z ,  t )  . Vf O - U1(O-, y, z , t )  

'f O .  'f' = a (vy" + mo v . v,(O-, y , z ,  t )  + ~ Dmo) (5.40) 
Dt ' 

+ 
m, 

This equation provides the O(S) corrections to the flame-front evolution expressed 
in terms off'. Upon dividing both sides by m,, and employing (1.4), it  is easily seen 
that the left-hand side represents the O(6) correction to the flame speed S,. Thus (5.40) 
expresses the correction to the flame speed which is no longer constant, but varies 
along the front and with time. The physical significance of the various terms 
responsible for those variations in the flame speed will be discussed below. 

9-2 
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Finally we consider the longitudinal component of the momentum equations 

+ 2Vf 0 .  Vf 1 0 -  a Z u  V Z f 0 2 -  au 2 -  a (Vfo.Vu,)+id(3+V.vo)}, (5.41) a!? ac ac 3 a c  ac 
to be solved for p,. Equations (3.15) and (3.18) imply that 

(5.42) 

Integrating (5.41) with respect to cfrom - co to + co, employing (5.42), and matching 
to the outer expansion (4.1), yields the jump in across the flame as 

[Tq] = -2m,[rUJ+ (Pr+g)  { mt p;;] ~ -~ P: + w m , .  VP 
mt 

VZfo Vfo.Vf' Vfo.Vm, 
+ l n ( l + q )  

m; 
+ q - -  2q ng  -4 

m0 

L) Uo 1 Dm, 
- (0-, y, 2, t )+ Vf" VU,(*-, y, 2, t )  +--+Vmo .VfO}. (5.43) 

x { m o  Dt m, Dt m; 

6. Summary of results 
In  t>his section we summarize the results we have derived from a study of the flame 

structure. In  particular we discuss in turn results for the motion of the flame front', 
the jump conditions across the flame front, the vorticity production in the flame, the 
temperature of the burned gases, and the stability of plane flames. To present results 
valid to O(S),  we add together the results for the first two terms of the expansions 

6.1. The motion of th.e flame front 

From (5.16)'and (5.40) we obtain the equation governing the motion of the flame front 

(5.2). 

as 
1 DN 
N Dt 

( u p ,  y, z ,  t)-v(O-, y, z ,  t )  . Vj-f,}N-' = 1 -6a . v(0-, y ,  z ,  t )  +--}to(&). 

(6.1) 
where N = (1 + IVflZ)i. Using (1.4), we can rewrite (6.1) as an equation for the flame 

(6.2) 

Wc? observe that the correction terms to  the Landau-Darrieus model are proportional 
to the flame thickness 6 and to the parameter a defined by (5.29), which accounts 
for the heat release q and for differential diffusion 1. The interpretation of the 
bracketed terms is related to the concept of flame stretch, first introduced by 
Karlovitz et al. (1953) as follows. 

Let A represent the surface area of an element on the flame front. As the flame 
front moves through the fluid, the element deforms so that A varies with time. A 
measure of this deformation, or stretch, may be expressed by 
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Buckmaster (1979) derived an  expression for the fractional variations of the area A, 
based on kinematic arguments. We can use his result to write an expression for K in 
our notation, as 

where v is the velocity of the surface f ;  = 0 with respect to a fixed frame of reference, 
as defined in 3 1. To relate K to the flame speed Sf, we note that the surface element 
moves on the flame surface with velocity 

v - ( v . n ) n  = V-(V.n)nI tEO- ,  (6.5) 

that is, a t  a rate equal to the tangential component of the unburned gas velocity V. 
Writing, as before, V = u i + v  and using (1.3) and (1.4), as well as the expression 
n = N-l(i-Vf), we obtain 

Then (6.4) and (6.6) yield an implicit relation between flame stretch K and flame speed 
X,, given by 1 DN 

(6.7) 
1 
N N Dt 

K = -v.  (8,vf) + v .  V ( O - ,  'tJ, Z, t ) + - - .  

Then, since by (6.2) S, = 1 +O(S), we can rewrite (6.7) as 

Equation (6.3) for the flame speed can be now rewritten as 

8, = 1 -SULK. (6.9) 

Some have attempted to  interpret the terms Vzf and V . v(O-, y ,  z ,  t )  in (6.2) as flame 
curvature and flame stretch respectively. Here we show that in fact both terms, when 
added to N-l DNIDt, which did not appear in other analyses, constitute the flame 
stretch K .  We observe that the deviation of flame speed from the flame speed of a 
plane adiabatic flame (i.e. S, = 1) is directly proportional to  flame stretch K .  Lewis 
& von Elbe (1967, p. 227) presented intuitive arguments indicating that positive 
stretch ( K  > 0) implies a slower flame speed. Their argument is based on the idea that 
positive stretch lowers the rate a t  which heat and active species are transferred from 
the reaction zone to the unburned gases. Our results, however, indicate that flame 
stretch is also related to the mobility of the deficient reactant towards the flame. More 
precisely, a positive stretch ( K  > 0 )  is associated with a decrease in the local flame 
speed only if 

(6.10) 
q J  In (i+qe")dx 

--oo 

i.e. if Le > Le*, where Le* = l-sl* < 1. 
Finally, we observe that our evolution equation (6.1) for the flame shape f,  when 

specialized to the case where both f and v are O(S), reduces to that obtained by Clavin 
& Williams (1983). Their correction term can be considered to be a linear version of 
the correction term in (6.1), since i t  is obtained from ours by setting N = 1. Then 
the term N-' DNIDt vanishes and the term N-'V2f reduces to Vzf, which is their 
result. 
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6.2. The jump  conditions across the flame 

Equations (1.5)-( 1.7), (5.33), (5.36) and (5.43) imply that the jump conditions across 
the flame front [ = 0 can be written as 

[p(V.n-vn)] = 6ln(l+q)K, (6.11) 

(6.12) 

We note that the dependence on the parameters accounts for the heat release q, and 
for viscous effects Pr. The dependence on the Prandtl number is of special interest, 
since the influence of viscosity on flame propagation is not yet well understood (cf. 
Markstein 1964 ; Frankel & Sivashinsky 1982). As noted earlier, the leading terms 
of the jump conditions (6.11)-(6.13) are identical with (1.5)-(1.7), namely with the 
Landau-Darrieus model. The O(8) terms then provide corrections accounting for the 
interaction of fluid flow with species diffusion, heat conduction and chemical 
reactions, which were absent in the Landau-Darrieus model. If we again specialize 
the jump conditions to  the case where both f and v are 0(6 ) ,  they reduce to those 
obtained by Pelce & Clavin (1982). 

We have thus derived a model for a flame: in a general fluid flow. It consists of (4.9) 
and (4.101, the jump conditions (6.1 11-16.13) and the evolution equation (6.1). 

6.3. Vorticity production in the flame 

An aspect of gasdynamics associated with combustion, which has received some 
attention in the past, is the vorticity produced by the flame front. It is known that 
if the flow ahead of a flame is irrotat'ional, a curved flame will generate vorticity so 
that the burned gases are no longer irrotational (see e.g. Emmons 1958). Indeed, even 
if the fluid upstream is rotational, the vorticity vector will jump across the flame. 
I n  order to quantify this property, we note that in the moving coordinates, the 
vorticity vector o is given by 

av au 
o = Vx(ui+v)+( i -Vf)x-+( ixVf) - - .  a t  a t  

Using (6.10) and (6.11), we find that to leading order 

[ o ] = q V x n + N  n x -  +( ixVf)  - +o(I), [I En [En 

(6.14) 

(6.15) 

where n is a unit vector normal to the flame front. Therefore 

[ w . n ]  = ~ ( l ) ,  (6.16) 

confirming that to leading order the normal component of the vorticity is continuous 
at the flame front, in agreement with the discussion in Emmons (1958, p. 610). 
Emmons' results follow from the assumption that the velocity components tangent 
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to the flame surface are continuous at  the flame. According to (6.1%) this is only 
true to leading order in 6. Thus the jump in the normal component of o is o ( l ) ,  so 
that (6.15) represents the 0(1) jump in the tangential components of the vorticity 
vector. The vorticity thus produced at  the flame is then carried into the region 6 > 0. 

I t  should be noted that the jumps in the velocity gradients appearing in (6.15) can 
be evaluated from (5.32) and (5.37). The resulting equation for the jump in the 
vorticity is thus expressed in terms of the gas velocities ahead of the front. This is 
apparently the first time that an expression for the vorticity production is given 
explicitly in terms of the velocity field of the unburned gases. 

6.4 The temperature of thp burned gases 

We recall that the temperature of the burned gases varies only by O(e)  from the 
adiabatic flame temperature 1 + q ,  and that 

T =  l+p+eh([ , y , z , t )  ( E > 0 ) .  (6 17) 

Expanding h as in (4.1) we found that H ,  must satisfy (4.3), implying that H,  does 
not vary along particle paths. According to (5.13), the leading term in the expansion 
of h inside the flame zone is seen to vanish as 6 -  m. Thus matching implies that 
H,(O, y, z ,  t )  = 0 ,  and therefore 

Substituting the expansions (4.1) into (3.8) and using (6.18) we obtain an equation 

(6.19) 
for H ,  as 

Again the convective derivative of H ,  vanishes, implying that the values of H ,  a t  
the flame are carried along particle paths into the burned region. Evaluation of 
H,(O, y, 2, t )  follows by matching to the large-[ behaviour of the O(6) term of the 
expansion of h inside the flame zone. The latter, based on (5 25) and (5.%6), provides 

H ,  = 0 ( [ > 0 ) .  (6 18) 

aH,  aH,  
--++s,---+Vo. V H ,  = 0 (5 > 0). 
at a t  

H,(O,y , z , t )  = -ZI . 
N Dt 

(6.20)  

In order to determine the temperature distribution of the burned gases, (6.19) must 
be solved for [ > 0 ,  subject to  the boundary condition (6.20) at [ = 0. We observe 
that the non-uniform temperature distribution is an O(e6) correction to the adiabatic 
flame temperature. 

Finally, we note that the flame temperature 1; is given by 

q = l +q -e611  (6.21) 

The terms in parentheses on the right-hand side of (6.21) have been identified as the 
flame stretch K ,  so that Tf = 1 + q - e d l I ~ .  Thus a positive stretch is associated with 
a decrease in flame temperature if I > 0 (Le > 1 )  and with an increase of flame 
temperature if 1 < 0 (Le < 1 ) .  We recall that a positive stretch is associated with a 
decrease in the local flame speed if Le > Le* with Le* < 1 ,  and an increase in flame 
speed otherwise. Thus, a t  least for some range of Lewis numbers, specifically for 
Le* < Le < 1 ,  an increase in flame temperature is not associated with an increase in 
flame speed. 
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FIGURE 4. Growth rate of a disturbance versus its wavenumber according t o  results based on the 
model derived in this paper that. takes account of the flame structure: (a)  q = O(1); ( h )  q < 1. 

6.5. The stability of plane Jlames 

We have employed the model derived above to study the stability of plane flames. 
Here we only summarize the results. Choosing the characteristic length I, as the 
wavelength of the disturbance, the resulting dispersion relation may be expressed 
as a series in powers of the wavenumber k .  We show that 

w = w 0 k + w 1 k 2 + 0 ( k 3 ) ,  (6.22) 

with 

where wo > 0 was derived by Landau (1944) and Darrieus (1945), and w1 is a new 
correction term to their results, which depends on the parameters I and q ,  An 
expression similar to (6.22) was previously derived by Frankel & Sivashinsky (1982) 
and Pelce & Clavin (1982). We note that if w1 = 0,  plane flames are indeed unstable 
for all k > 0, as envisaged by Landau & Darrieus (this is often called the hydro- 
dynamical instability). The correction 0(k2) term in (6.22) has a stabilizing effect for 
k > k,  (see figure 4) if wo < 0, and a destabilizing effect otherwise. Whether w1 is 
negative or not depends on the Lewis number expressed by 1. In  particular we note 
that for q 6 I ,  wo - +q, so that the hydrodynamic instability disappears (figure 4 b ) .  
Then plane flames are shown to be stable for lq > - 2 ,  a condition first derived by 
Sivashinsky (1976) and referred to  as the diffusional-thermal stability. 
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